CIS 23

Mathematical Background *

Eric Pacuit

March 20, 2005

Introduction

- What is an algorithm?
- Thinking about algorithms
- What is the complexity of an algorithm?
- Comparing algorithms
- Proving facts about algorithms
- Recursive algorithms

What is an algorithm?

- Finite set of actions to achieve a certain outcome, i.e. to solve a problem
- Leave out implementation details, I.e hardward/software independant: The choice of language or machine should not change the outcome of the algorithm
- How should we write down an algorithm? What language should we use?

Psuedo-code conventions

- Often to explain or describe an algorithm informally, we use the language of (nonformal) set theory.

Basic Set Theory

There are two basic ways to define a set:

1. List all the elements of the set. Each element should be separated by a comma and contained between curly brackets (\{\}). For example suppose A is the set of the first 5 letters of the alphabet. Then $A=$ $\{a, b, c, d, e\}$.
2. Write down a property that all elements of the set have in common. For example if A is the set of all positive integers, then $A=\{x \mid x \geq 0$ and x is an integer $\}$. This is read " x such that x is greater than or equal to zero and x is an integer".

Basic Definitions

Suppose A and B are two sets.

Definition 1 (Universal Set) The Universal Set will be represented by the letter U.

Definition 2 (Element) If we want to say x is an element of A, then we write $x \in A$

Definition 3 (Subset) $A \subseteq B$ if and only if every element of A is also an element of B

Definition 4 (Union) $A \cup B=\{x \mid x \in A$ or $x \in$ B\}

Definition 5 (Intersection) $A \cap B=\{x \mid x \in$ A and $x \in B\}$

Definition 6 (Complement) $A^{C}=\{x \mid x \notin$ A\}

Definition 7 (Set Difference) $A \backslash B=\{x \mid x \in$ A and $x \notin B\}$

Definition 8 (Cross Product) $A \times B=\{(a, b) \mid a \in$ A and $b \in B\}$

Definition 9 (Empty Set) The set with no elements is denoted by \varnothing

Definition 10 (Power Set) The poser set of a set S is the set of all subsets of S, including S and \varnothing, and is denoted 2^{S} or $\mathcal{P}(S)$

Definition 11 (Cardinality of a Set) The cardinality of a finite set S is the total number of elements in S, and is denoted $|S|$.

Definition 12 (Partition) A partition of a set S is a collection of sets $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots\right\}$ (possibly infinite) such that

- the sets are pairwise disjoint, that is $S_{i}, S_{j} \in$ \mathcal{S} and $i \neq j$ imply $S_{i} \cap S_{j}=\varnothing$
- their union is S, that is,

$$
S=\cup_{S_{i} \in \mathcal{S}} S_{i}
$$

Some Useful Properties

- (Distributive Law) $A \cap(B \cup C)=(A \cap B) \cup$ $(A \cap C)$
- (Distributive Law) $A \cup(B \cap C)=(A \cup B) \cap$ $(A \cup C)$
- (DeMorgan's Law) $(A \cup B)^{C}=A^{C} \cap B^{C}$
- (DeMorgan's Law) $(A \cap B)^{C}=A^{C} \cup B^{C}$
- $\left(A^{C}\right)^{C}=A$
- $|A \times B|=|A| \cdot|B|$
- $|A \cup B|=|A|+|B|-|A \cap B|$
- $\left|2^{A}\right|=2^{|A|}$
- $A=B$ iff $A \subseteq B$ and $B \subseteq A$

You should be able to prove each of these properties

Relations

Definition 13 (Binary Relation) A binary relation R on two sets A and B is a subset of the Cross Product $R \subseteq A \times B$

You should be familiar with many binary relations: $=, \leq, \geq,<,>$. For example the binary relation $\leq \subseteq \mathbb{N} \times \mathbb{N}$ is the set
$\{(a, b) \mid a, b \in \mathbb{N}$ and a is less than or equal to $b\}$

Suppose R is a relation. We often write $a R b$ to mean $(a, b) \in R$.

Some Important Properties of Relations

Suppose R is any relation on A and, that is $R \subseteq A \times A$. Suppose $a, b, c \in A$.

Reflexivity $a R a$ for all $a \in A$ (in this case $A=$ B)

Symmetry if $a R b$ then $b R a$

Antisymmetric if $a R b$ and $b R a$ then $a=b$

Transitive if $a R b$ and $b R c$ then $a R c$

Definition 14 (Equivalence Relation) A relation R that is reflexive, symmetric and transitive is said to be an equivalence relation

Definition 15 (Equivalence Class) If R is an equivalence relation on A and B, then for each $a \in A$, the equivalence class of a, denoted by [a] is the following set

$$
[a]=\{b \in B \mid a R b\}
$$

Definition 16 (Partial Order) A relation that is reflexive, antisymmetric and transitive is said to be a partial order.

Theorem 17 The equivalence classes of any equivalence relation R on a set A forms a partition of A, and any partition of A determines an equivalence relation on A for which the sets in the partition are the equivalence classes.

Proof Suppose R is an equivalence relation on A. We must show that the equivalence classes of R forms a partition of A.

1. Each equivalence class is non-empty, since $a R a$ for all $a \in A$.
2. Clearly A is union of all the equivalence classes (since each element of A belongs to at least one equivalence class)
3. We must show any two equivalence classes are disjoint. Let $[a],[b]$ be two distinct equivalence classes. Suppose $c \in[a] \cap[b]$. Then $a R c$ and $b R c$. Hence by symmetry, $c R b$. And so by transitivity, $a R b$.

Let $x \in[a]$, then $x R c$ and by the above argument $x R b$ (Why?), and so $x \in[b]$. Thus $[a] \subseteq[b]$. Using a similar argument, we can show $[b] \subseteq[a]$. Therefore $[a]=[b]$, which contradicts the fact that $[a]$ and $[b]$ are distinct equivalence classes.

For the second part of the theorem, suppose $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ is any partition of A. Define $R=\left\{(a, b) \mid a \in A_{i}\right.$ and $\left.b \in A_{i}\right\}$. It will be left up to you to show R is reflexive, symmetric and transitive.

Graph Theory

We have seen that you can use Venn Diagrams to visualize sets, but what about relations? Can we visualize a relation?

Perhaps, not so surprising, but the answer is yes. We can use a graph to visualize a relation:

Suppose $A=\{a, b, c\}$ and $R=\{(a, a),(a, b),(c, b),(c, c)\}$. Then the following is a "picture" of this relation:

Actually, the field of Graph Theory is used for much more than just visualizing relations. We will talk a lot more about Graph Theory later in the semester.

Definition 18 A Graph is a pair (V, E), where V is a set of nodes (usually finite) and $E \subseteq$ $V \times V$ is called the set of edges.

Graph's can be directed or undirected. A graph is undirected if for each there are no arrows. This can be stated by saying that E is assumed to be symmetric. It should be clear from the context if we mean a directed graph or an undirected graph.

Functions

We will think of a function as a special type of relation:

Definition 19 (Function) a function f is a binary relation on A and B such that for all $a \in A$, there exists a $b \in B$ such that $(a, b) \in f$. We will often write $f: A \rightarrow B$ and if $(a, b) \in f$, we will write $f(a)=b$.

Suppose $f: A \rightarrow B$ is a function. A is said to be the domain and B the codomain.

Definition 20 (Image) The image of a set $A^{\prime} \subseteq A$ is the set:

$$
f\left(A^{\prime}\right)=\left\{b \mid b=f(a) \text { for some } a \in A^{\prime}\right\}
$$

Definition 21 (Range) The range of a function is the image of its domain.

Suppose $f: A \rightarrow B$ is a function.

Definition 22 (Surjection) f is a surjection (or onto) if its range is equal to its codomain. I.e., f is surjective iff for each $b \in B$, there exists an $a \in A$ such that $f(a)=b$

Definition 23 (Injection) f is an injection (or 1-1) if distinct elements of the domain produce distinct elements of the codomain. I.e., f is 1 1 iff $a \neq a^{\prime}$ implies $f(a) \neq f\left(a^{\prime}\right)$, or equivalently $f(a)=f\left(a^{\prime}\right)$ implies $a=a^{\prime}$.

Definition 24 (Bijection) f is a bijection if it is injective and surjective. In this case, f is often called a one-to-one correspondence.

Properties of Exponentials

For all real $a \neq 0, m$, and n, we have the following identities:

$$
\begin{aligned}
a^{0} & =1 \\
a^{1} & =a \\
a^{-1} & =1 / a \\
\left(a^{m}\right)^{n} & =a^{m n} \\
\left(a^{m}\right)^{n} & =\left(a^{n}\right)^{m} \\
a^{m} a^{n} & =a^{m+n}
\end{aligned}
$$

Properties of Logarithms

Definition 25 (Logarithm) $\log _{b} a=n$ if and only if $b^{n}=a$

For all real $a>0, b>0, c>0$ and n,

$$
\begin{aligned}
a & =b^{\log _{b} a} \\
\log _{c}(a b) & =\log _{c} a+\log _{c} b \\
\log _{b}\left(a^{n}\right) & =n \log _{b} a \\
\log _{b} a & =\frac{\log _{c} a}{\log _{c} b} \\
\log _{b}(1 / a) & =-\log _{b} a \\
\log _{b} a & =\frac{1}{\log _{a} b} \\
a^{\log _{b} n} & =n^{\log _{b} a}
\end{aligned}
$$

For this course we will assume $\log n=\log _{2} n$ and $\ln n=\log _{\mathrm{e}} n$

Summations

Given a sequence a_{1}, a_{2}, \ldots of numbers, the finite sum $a_{1}+a_{2}+\cdots+a_{n}$ can be written as

$$
\sum_{i=1}^{n} a_{i}
$$

The infinite sum $a_{1}+a_{2}+\cdots$ can be written as

$$
\sum_{i=1}^{\infty} a_{i}
$$

and is interpreted to mean

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

If the limit does not exist, then the sum is said to diverge; otherwise it converges.

Arithmetic Series $\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)$

Linearity $\sum_{k=1}^{n}\left(c a_{k}+d b_{k}\right)=c \sum_{k=1}^{n} a_{k}+d \sum_{k=1}^{n} b_{k}$

Geometric Series For real $x \neq 1, \sum_{k=0}^{n} x^{k}=$ $\frac{x^{n+1}-1}{x-1}$; and when $|x|<1, \sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$

Harmonic Series $\sum_{k=1}^{n} \frac{1}{k}=\ln n+C$, for some constant C.

