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Introduction

• What is an algorithm?

• Thinking about algorithms

• What is the complexity of an algorithm?

• Comparing algorithms

• Proving facts about algorithms

• Recursive algorithms
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What is an algorithm?

• Finite set of actions to achieve a certain
outcome, i.e. to solve a problem

• Leave out implementation details, I.e hard-
ward/software independant: The choice of
language or machine should not change the
outcome of the algorithm

• How should we write down an algorithm?
What language should we use?

Psuedo-code conventions

• Often to explain or describe an algorithm
informally, we use the language of (non-
formal) set theory.
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Basic Set Theory

There are two basic ways to de�ne a set:

1. List all the elements of the set. Each el-
ement should be separated by a comma
and contained between curly brackets ({}).
For example suppose A is the set of the
�rst 5 letters of the alphabet. Then A =

{a, b, c, d, e}.

2. Write down a property that all elements of
the set have in common. For example if
A is the set of all positive integers, then
A = {x | x ≥ 0 and x is an integer}. This
is read �x such that x is greater than or
equal to zero and x is an integer�.
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Basic De�nitions

Suppose A and B are two sets.

De�nition 1 (Universal Set) The Universal
Set will be represented by the letter U .

De�nition 2 (Element) If we want to say x

is an element of A, then we write x ∈ A

De�nition 3 (Subset) A ⊆ B if and only if
every element of A is also an element of B
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De�nition 4 (Union) A∪B = {x|x ∈ A or x ∈
B}

De�nition 5 (Intersection) A ∩ B = {x | x ∈
A and x ∈ B}

De�nition 6 (Complement) AC = {x | x 6∈
A}

De�nition 7 (Set Di�erence) A\B = {x | x ∈
A and x 6∈ B}

De�nition 8 (Cross Product) A×B = {(a, b) | a ∈
A and b ∈ B}
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De�nition 9 (Empty Set) The set with no
elements is denoted by ∅

De�nition 10 (Power Set) The poser set of
a set S is the set of all subsets of S, including
S and ∅, and is denoted 2S or P(S)

De�nition 11 (Cardinality of a Set) The car-
dinality of a �nite set S is the total number of
elements in S, and is denoted |S|.

De�nition 12 (Partition) A partition of a set
S is a collection of sets S = {S1, S2, . . .} (pos-
sibly in�nite) such that

• the sets are pairwise disjoint, that is Si, Sj ∈
S and i 6= j imply Si ∩ Sj = ∅

• their union is S, that is,

S = ∪Si∈SSi
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Some Useful Properties

• (Distributive Law) A∩ (B ∪C) = (A∩B)∪
(A ∩ C)

• (Distributive Law) A∪ (B ∩C) = (A∪B)∩
(A ∪ C)

• (DeMorgan's Law) (A ∪B)C = AC ∩BC

• (DeMorgan's Law) (A ∩B)C = AC ∪BC

• (AC)C = A

• |A×B| = |A| · |B|

• |A ∪B| = |A|+ |B| − |A ∩B|
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• |2A| = 2|A|

• A = B i� A ⊆ B and B ⊆ A

You should be able to prove each of these prop-
erties



Relations

De�nition 13 (Binary Relation) A binary re-
lation R on two sets A and B is a subset of the
Cross Product R ⊆ A×B

You should be familiar with many binary re-
lations: =,≤,≥, <, >. For example the binary
relation ≤⊆ N× N is the set

{(a, b) | a, b ∈ N and a is less than or equal to b}

Suppose R is a relation. We often write aRb

to mean (a, b) ∈ R.
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Some Important Properties of
Relations

Suppose R is any relation on A and, that is
R ⊆ A×A. Suppose a, b, c ∈ A.

Re�exivity aRa for all a ∈ A (in this case A =

B)

Symmetry if aRb then bRa

Antisymmetric if aRb and bRa then a = b

Transitive if aRb and bRc then aRc
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De�nition 14 (Equivalence Relation) A re-
lation R that is re�exive, symmetric and tran-
sitive is said to be an equivalence relation

De�nition 15 (Equivalence Class) If R is an
equivalence relation on A and B, then for each
a ∈ A, the equivalence class of a, denoted by
[a] is the following set

[a] = {b ∈ B | aRb}

De�nition 16 (Partial Order) A relation that
is re�exive, antisymmetric and transitive is said
to be a partial order.
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Theorem 17 The equivalence classes of any
equivalence relation R on a set A forms a par-
tition of A, and any partition of A determines
an equivalence relation on A for which the sets
in the partition are the equivalence classes.

Proof Suppose R is an equivalence relation on
A. We must show that the equivalence classes
of R forms a partition of A.

1. Each equivalence class is non-empty, since
aRa for all a ∈ A.

2. Clearly A is union of all the equivalence
classes (since each element of A belongs
to at least one equivalence class)
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3. We must show any two equivalence classes
are disjoint. Let [a], [b] be two distinct
equivalence classes. Suppose c ∈ [a] ∩ [b].
Then aRc and bRc. Hence by symmetry,
cRb. And so by transitivity, aRb.

Let x ∈ [a], then xRc and by the above ar-
gument xRb (Why?), and so x ∈ [b]. Thus
[a] ⊆ [b]. Using a similar argument, we can
show [b] ⊆ [a]. Therefore [a] = [b], which
contradicts the fact that [a] and [b] are dis-
tinct equivalence classes.

For the second part of the theorem, suppose
A = {A1, . . . , An} is any partition of A. De�ne
R = {(a, b) | a ∈ Ai and b ∈ Ai}. It will be left
up to you to show R is re�exive, symmetric
and transitive.



Graph Theory

We have seen that you can use Venn Diagrams
to visualize sets, but what about relations?
Can we visualize a relation?

Perhaps, not so surprising, but the answer is
yes. We can use a graph to visualize a relation:

Suppose A = {a, b, c} and
R = {(a, a), (a, b), (c, b), (c, c)}. Then the fol-
lowing is a "picture" of this relation:
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Actually, the �eld of Graph Theory is used for
much more than just visualizing relations. We
will talk a lot more about Graph Theory later
in the semester.

De�nition 18 A Graph is a pair (V, E), where
V is a set of nodes (usually �nite) and E ⊆
V × V is called the set of edges.

Graph's can be directed or undirected. A graph
is undirected if for each there are no arrows.
This can be stated by saying that E is assumed
to be symmetric. It should be clear from the
context if we mean a directed graph or an undi-
rected graph.
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Functions

We will think of a function as a special type of
relation:

De�nition 19 (Function) a function f is a
binary relation on A and B such that for all
a ∈ A, there exists a b ∈ B such that (a, b) ∈ f .
We will often write f : A → B and if (a, b) ∈ f ,
we will write f(a) = b.

Suppose f : A → B is a function. A is said to
be the domain and B the codomain.

De�nition 20 (Image) The image of a set
A′ ⊆ A is the set:

f(A′) = {b | b = f(a) for some a ∈ A′}

De�nition 21 (Range) The range of a func-
tion is the image of its domain.
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Suppose f : A → B is a function.

De�nition 22 (Surjection) f is a surjection
(or onto) if its range is equal to its codomain.
I.e., f is surjective i� for each b ∈ B, there
exists an a ∈ A such that f(a) = b

De�nition 23 (Injection) f is an injection (or
1-1) if distinct elements of the domain produce
distinct elements of the codomain. I.e., f is 1-
1 i� a 6= a′ implies f(a) 6= f(a′), or equivalently
f(a) = f(a′) implies a = a′.

De�nition 24 (Bijection) f is a bijection if
it is injective and surjective. In this case, f is
often called a one-to-one correspondence.
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Properties of Exponentials

For all real a 6= 0, m, and n, we have the
following identities:

a0 = 1

a1 = a

a−1 = 1/a

(am)n = amn

(am)n = (an)m

aman = am+n
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Properties of Logarithms

De�nition 25 (Logarithm) logb a = n if and
only if bn = a

For all real a > 0, b > 0, c > 0 and n,

a = blogb a

logc(ab) = logc a + logc b

logb(a
n) = n logb a

logb a =
logc a

logc b
logb(1/a) = − logb a

logb a =
1

loga b

alogb n = nlogb a

For this course we will assume logn = log2 n

and lnn = loge n
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Summations

Given a sequence a1, a2, . . . of numbers, the �-
nite sum a1 + a2 + · · ·+ an can be written as

n∑

i=1

ai

The in�nite sum a1 + a2 + · · · can be written
as

∞∑

i=1

ai

and is interpreted to mean

lim
n→∞

n∑

k=1

ak

If the limit does not exist, then the sum is said
to diverge; otherwise it converges.
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Arithmetic Series ∑n
k=1 k = 1

2n(n + 1)

Linearity ∑n
k=1(cak+dbk) = c

∑n
k=1 ak+d

∑n
k=1 bk

Geometric Series For real x 6= 1, ∑n
k=0 xk =

xn+1−1
x−1 ; and when |x| < 1, ∑∞

k=0 xk = 1
1−x

Harmonic Series ∑n
k=1

1
k = lnn+C, for some

constant C.
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