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What is an algorithm?

Finite set of actions to achieve a certain
outcome, i.e. to solve a problem

LLeave out implementation details, I.e hard-
ward /software independant: The choice of
language or machine should not change the
outcome of the algorithm

How should we write down an algorithm?
What language should we use?

Psuedo-code conventions

Often to explain or describe an algorithm
informally, we use the language of (non-
formal) set theory.



Basic Set Theory

There are two basic ways to define a set:

1. List all the elements of the set. Each el-
ement should be separated by a comma
and contained between curly brackets ({}).
For example suppose A is the set of the
first 5 letters of the alphabet. Then A =
{a,b,c,d,e}.

2. Write down a property that all elements of
the set have in common. For example if
A is the set of all positive integers, then
A= {x | £ > 0 and z is an integer}. This
IS read “o such that x is greater than or
equal to zero and x is an integer’.



Basic Definitions

Suppose A and B are two sets.

Definition 1 (Universal Set) The Universal
Set will be represented by the letter U.

Definition 2 (Element) If we want to say x
is an element of A, then we write x € A

Definition 3 (Subset) A C B if and only if
every element of A is also an element of B



Definition 4 (Union) AUB ={z|x € A or x €
B}

Definition 5 (Intersection) ANB={z | x €
A and z € B}

Definition 6 (Complement) A = {z | = ¢
A}

Definition 7 (Set Difference) A\B={x|x €
A and x € B}

Definition 8 (Cross Product) AxB = {(a,b) | a €
A and b e B}



Definition 9 (Empty Set) The set with no
elements is denoted by O

Definition 10 (Power Set) The poser set of
a set S is the set of all subsets of S, including
S and @, and is denoted 25 or P(S)

Definition 11 (Cardinality of a Set) The car-
dinality of a finite set S is the total number of
elements in S, and is denoted |S]|.

Definition 12 (Partition) A partition of a set
S is a collection of sets S = {51,55,...} (pos-
sibly infinite) such that

e the sets are pairwise disjoint, that is S;,S; €
S and iz j imply S;NS; =9

e their union is S, that is,

S = Ug,cs5;



Some Useful Properties

e (Distributive Law) ANn(BUC) =(ANnB)U
(ANC)

e (Distributive Law) AU(BNC) = (AUB)N
(AUCQC)

e (DeMorgan’'s Law) (AU B)¢ = A¢ n B®

e (DeMorgan’'s Law) (AN B)¢ = A¢ U B¢

o (AHC =4

o [Ax B|=|A]-|B

e |[AUB|=|A|+ |B|—-|AN B|



° |2A| — 2l A]

e A=BIiffACBand BCA

You should be able to prove each of these prop-
erties



Relations

Definition 13 (Binary Relation) A binary re-
lation R on two sets A and B is a subset of the
Cross Product RC A X B

You should be familiar with many binary re-

lations: =, <, >, <, >. For example the binary
relation <C N x N is the set

{(a,b) | a,b € N and a is less than or equal to b}

Suppose R is a relation. We often write aRb
to mean (a,b) € R.



Some Important Properties of

Relations

Suppose R is any relation on A and, that is
RCAXx A. Suppose a,b,c € A.

Reflexivity aRa for all a € A (in this case A =
B)

Symmetry if aRb then bRa

Antisymmetric if aRb and bRa then a = b

Transitive if aRb and bRc then aRc



Definition 14 (Equivalence Relation) A re-
lation R that is reflexive, symmetric and tran-
Sitive is said to be an equivalence relation

Definition 15 (Equivalence Class) IfR is an
equivalence relation on A and B, then for each
a € A, the equivalence class of a, denoted by
la] is the following set

la] = {b € B | aRb}

Definition 16 (Partial Order) A relation that
is reflexive, antisymmetric and transitive is said
to be a partial order.
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Theorem 17 The equivalence classes of any
equivalence relation R on a set A forms a par-
tition of A, and any partition of A determines
an equivalence relation on A for which the sets
in the partition are the equivalence classes.

Proof Suppose R is an equivalence relation on
A. We must show that the equivalence classes
of R forms a partition of A.

1. Each equivalence class is non-empty, since
aRa for all a € A.

2. Clearly A is union of all the equivalence
classes (since each element of A belongs
to at least one equivalence class)
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3. We must show any two equivalence classes
are disjoint. Let [a],[b] be two distinct
equivalence classes. Suppose ¢ € [a] N [b].
Then aRc and bRc. Hence by symmetry,
cRb. And so by transitivity, aRb.

Let z € [a], then xRc and by the above ar-
gument xRb (Why?), and so x € [b]. Thus
[a] C [b]. Using a similar argument, we can
show [b] C [a]. Therefore [a] = [b], which
contradicts the fact that [a] and [b] are dis-
tinct equivalence classes.

For the second part of the theorem, suppose
A= {Aq,...,An} is any partition of A. Define
R = {(a,b) | a € A; and b € A;}. It will be left
up to you to show R is reflexive, symmetric
and transitive.



Graph Theory

We have seen that you can use Venn Diagrams
to visualize sets, but what about relations?
Can we visualize a relation?

Perhaps, not so surprising, but the answer is
yes. We can use a graph to visualize a relation:

Suppose A = {a,b,c} and
R = {(a,a),(a,b),(c,b),(c,c)}. Then the fol-
lowing is a "picture" of this relation:
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Actually, the field of Graph Theory is used for
much more than just visualizing relations. We
will talk a lot more about Graph Theory later
in the semester.

Definition 18 A Graph is a pair (V, FE), where
V is a set of nodes (usually finite) and E C
V x V is called the set of edges.

Graph's can be directed or undirected. A graph
IS undirected if for each there are no arrows.
This can be stated by saying that E is assumed
to be symmetric. It should be clear from the
context if we mean a directed graph or an undi-
rected graph.
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Functions

We will think of a function as a special type of
relation:

Definition 19 (Function) a function f is a
binary relation on A and B such that for all
a € A, there exists a b € B such that (a,b) € f.
We will often write f : A — B and if (a,b) € f,
we will write f(a) = b.

Suppose f: A— B is a function. A is said to
be the domain and B the codomain.

Definition 20 (Image) The image of a set
A" C A is the set:

f(AHY ={b| b= f(a) for some a € A"}
Definition 21 (Range) The range of a func-

tion is the image of its domain.
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Suppose f: A— B is a function.

Definition 22 (Surjection) f is a surjection
(or onto) if its range is equal to its codomain.
ILe., f is surjective iff for each b € B, there
exists an a € A such that f(a) = b

Definition 23 (Injection) f is an injection (or
1-1) if distinct elements of the domain produce
distinct elements of the codomain. ILe., f is 1-
1 iffa # o' implies f(a) % f(a'), or equivalently
f(a) = f(a") implies a = a’.

Definition 24 (Bijection) f is a bijection if

it is injective and surjective. In this case, f is
often called a one-to-one correspondence.
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Properties of Exponentials

For all real a # 0, m, and n, we have the
following identities:

¥ =1
CLl — Qa
a !l = 1/a
(am)n — gMmn
(am)n — (an)m
m . .n m-+n

Q
S
|
Q
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Properties of Logarithms

Definition 25 (Logarithm) logya = n if and
only if b = a

For all real a >0, b >0, ¢ > 0 and n,

a = blogba
log.(ab) = log.a+ 10g.b
logy(a™) = nlogya

o l0g.a

a =

b log. b
l0gy(1/a) = —logya
1
Je) =
W= 09 b
alogbn — nlogba

For this course we will assume logn = logon
and Inn = logen
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Summations

Given a sequence ai,an,... of numbers, the fi-
nite sum ay +a> 4+ --- 4+ an can be written as

n
> a;
1=1

The infinite sum a7y +a> 4+ --- can be written
as

oo
> a
1=1

and is interpreted to mean

n
nl|_>moo Z ag
k=1

If the limit does not exist, then the sum is said
to diverge; otherwise it converges.

18



Arithmetic Series Y7, k = 2n(n+ 1)
Linearity Zzzl(cak_l_dbk) = szzl ap+d 22’21 by

Geometric Series For real z # 1, Y7_ 2% =
gntl g,
z—1 '

and when [z < 1, Y3 jzF = 1

Harmonic Series Y7_; + = Inn+C, for some
constant C.
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